f(x) is a continuous function whose derivative f'(x) is shown on the right. SCORE: /24 PTS
The following questions are about the function f, NOT THE FUNCTION £/ ’

[a] Find the X — coordinates of all inflection points of f . _
Justify your answer very briefly. ‘ . ,\ /
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(b] Find the intervals over which f is decreasing,
Justify your answer very briefly.
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[c] Find all critical numbers of f, and state what the First Derivative Test tells you about each one.
Justify your answer very briefly.
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f(x) is a continuous and differentiable function whose second derivative f''(x) is shown on the right. SCORE: /12 PTS

The following questions are about the function f, NOT THE FUNCTION £ ” I

F

[a] If £'(6)=0, J
what does the Second Derivative Test tell you about the point (6, f(6)) ? (NOT f)

Justify your answer very briefly, ' \
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[b] Find the intervals over which f is concave up,
Justify your answer very briefly,
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Graph f(x) = — 3 using the process shown in lecture and in the website handout.
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The first and second derivatives are f'(x) = (2 - x) +3x(2-x)""
Do NOT find x—intercepts.

Coamplete the table below, after showing relevant work (except for entries marked %),
You will NOT receive credit for the entries in the table if the relevant work is missing.

SCORE:

and £ (x)=6(2—x)* +12x(2 - x)~
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A piece of wire 34 inches long is cut into two pieces. One piece is bent into a square and the other pieceisbent  SCORE: f30 PTS
into a rectangle whose width is twice its length. Each side of the square and of the rectangle must be at least 1 inch long,

You must use calculus to solve the following problems.

[a] What is the largest total area that can be enclosed in the two shapes ?
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fb] Find the dimensions of the square and the rectangle which give the largest total area.
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Findj(3x 2 . SCORE: __/15PTS
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Does Rolle’s Theorem apply to the function f(x) =3/ x> —4x +3 on the interval [—1, 5] ? SCORE: /15 PTS

(That is, are all conditions of Rolle’s Theorem true for f(x) =4/ x* —4x+3 on the interval [—1, 5] ?)
If yes, find the value of ¢ guaranteed by Rolle’s Theorem. If no, explain why not.
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