f(x) is a continuous function whose derivative f'(x) is shown on the right.

The following questions are about the function f, **NOT THE FUNCTION** f'.

Find the x – coordinates of all inflection points of f. [a] Justify your answer very briefly.

Find the intervals over which f is decreasing. [b]

Justify your answer very briefly.

Find all critical numbers of f , and state what the First Derivative Test tells you about each one. [c]

Find all critical numbers of
$$f$$
, and state what the First Derivative Test tells you about each one.

Justify your answer very briefly.

 $f' = O : O f' CHANGES FROM - TO + \longrightarrow LOCAL MIN$
 $+ + \longrightarrow NOT EXTIZEMA$
 $+ + \longrightarrow NOT EXTIZEMA$
 $+ + \longrightarrow NOT EXTIZEMA$

f(x) is a continuous and differentiable function whose second derivative f''(x) is shown on the right.

SCORE: _____ / 12 PTS

The following questions are about the function f, **NOT THE FUNCTION** f''.

[a] If f'(6) = 0,

what does the Second Derivative Test tell you about the point (6, f(6))?

Justify your answer very briefly.

[b] Find the intervals over which f is concave up.

Justify your answer very briefly.

Graph $f(x) = \frac{x}{(2-x)^3} - 3$ using the process shown in lecture and in the website handout

SCORE: _____ / 40 PTS

The first and second derivatives are $f'(x) = (2-x)^{-3} + 3x(2-x)^{-4}$ and $f''(x) = 6(2-x)^{-4} + 12x(2-x)^{-5}$.

Do NOT find x-intercepts.

Complete the table below, after showing relevant work (except for entries marked ★).

You will NOT receive credit for the entries in the table if the relevant work is missing.

★ Domain	★ Discontinuities	y – intercepts ONLY	One sided limits at each discontinuity (write using proper limit notation)	
X ≠ 2	X=2	(0,-3)	lim f(x)= 0	lim f(x)=-0
Horizontal Asymptotes	Intervals of Increase	Intervals of Decrease	Intervals of Upward Concavity	Intervals of Downward Concavity
y=-3	$(-1,2)$, $(2,\omega)$	(-00,-1)	(-2, 2)	(-00,-2), (2,00)
Vertical Tangent Lines	Horizontal Tangent Lines	Local Maxima	Local Minima	Inflection Points
NONE	X=-1	NONE	(十,-3計)	$(-2, -3\frac{1}{32})$

You must use calculus to solve the following problems.

[a] What is the largest total area that can be enclosed in the two shapes?

[b] Find the dimensions of the square and the rectangle which give the largest total area.

THE LARGEST AREA IS 51 SQUARE INCHES

Find
$$\int \frac{(3x^3-2)^2}{5x^4} \, dx$$
.

SCORE: _____/ 15 PTS

$$= \int \frac{9x^6 - 12x^3 + 24}{5x^4} dx$$

$$= \int (\frac{9}{5}x^2 - \frac{12}{5}x'' + \frac{4}{5}x'') dx$$

Find $\lim_{x\to 0^+} \sqrt{x} \ln x$. $\bigcirc -\infty$

$$=\lim_{x\to 0^+}\frac{\ln x}{x^{-\frac{1}{2}}} \xrightarrow{\infty}$$

$$= \lim_{x \to 0^+} \frac{x}{-\frac{1}{2}x^{\frac{2}{2}}}$$

$$= \lim_{x \to 0^+} -2x^{\frac{1}{2}} = 0$$

Does Rolle's Theorem apply to the function $f(x) = \sqrt[3]{x^2 - 4x + 3}$ on the interval [-1, 5]?

(That is, are all conditions of Rolle's Theorem true for $f(x) = \sqrt[3]{x^2 - 4x + 3}$ on the interval [-1, 5]?) If yes, find the value of c guaranteed by Rolle's Theorem. If no, explain why not.

$$f'(x) = \frac{1}{3}(x^2-4x+3)^{\frac{3}{3}}(2x-4)$$

IS UNDEFINED @ x2-4x+3=0

$$(x-1)(x-3)=0$$

f IS NOT DIFFERENTIABLE ON [-1,5]

SU POLLE'S THEOREM DOES NOT APPLY